Cryogenic Techniques below 1K

How to get cold, stay cold and measure something!

Ian Bradley Physics Department, Lancaster University, UK e-mail: I.Bradley@Lancaster.ac.uk

Initial statement of problem

 \Box You need to choose a refrigerator that can get colder than the temperature needed by your experiment T_E

The refrigerator must have sufficient cooling power to absorb the power dissipated by the measurement \dot{Q}_E and still maintain T_E

□ You need to cool the sample through some thermal link:

- sample must cool in a reasonable time
- thermal contact must be good enough that \dot{Q}_E doesn't warm the experiment above T_E

□ You need to be able to measure temperature:

- resolution, stability, transferability
- thermal contact
- power dissipation of the thermometer
- response time of the thermometer
- sensitivity to external parameters e.g. magnetic field

Books:

O V Lounsamaa	Experimental Principles & Methods below 1K Academic Press 1974
D S Betts	Refrigeration and Thermometry below 1K Sussex Univ Press 1976
R C Richardson & E N Smith	Experimental Techniques in Condensed Matter Physics at Low Temperatures, Addison Wesley 1988
F Pobell	Matter & Method at Low Temperatures Springer Verlag 1996

Cooling Methods

The main choices of refrigeration method:

a)	T > 0.25 K	³ He evaporation cryostat
b)	1.0 > T > 0.003 K	³ He - ⁴ He dilution refrigerator
c)	T < 0.003 K	Adiabatic nuclear demagnetisation
	Others: Not discussed further	Adiabatic electron demagnetisation [†] PrNi₅ demagnetisation

[†] For example, the recently developed Cambridge Magnetic Research mFridge. $T_{min} < 40$ mK, 24 hours @ 100mK

Cryogen-free systems now becoming available which can be combined with one of the above.

Pomeranchuk cooling

substituting for the (approx constant) latent heat $L=T\Delta S$, find

 $P \propto \exp(-L/RT)$

Cooling power ∞ mass flow across phase boundary ∞ *P*. \therefore exponentially falling cooling power.

L /R=2.5 K limits T_{base} to 0.2 – 0.3 K

Costs:

⁴He £3 per liquid litre, ³He £60,000 per liquid litre!

b) ³He-⁴He dilution refrigerator

commercially available

not cheap to buy or run!

Oxford Instruments: $T_{\text{base}} < 7 \text{mK},$ cooling power > 300μ W at 100 mK

Just a different form of evaporation cooling.

Well described in literature: Frossatti, LT15, J de Physique C6, sup 8, 1578, 1975

How does it work? ³He-⁴He mixture phase separates as it cools into a ³He-rich phase floating on top of a ⁴He-rich phase. At *T*~0 K, the ³He-rich phase is 100% ³He whilst the ⁴He-rich phase is ~6.6% ³He. If ³He can be made to 'evaporate' across the phase boundary from the ³He-rich phase to the ⁴He-rich phase, then cooling can occur. The entropy of each phase is proportional

~ 6%

to T (Fermi statistics) with the entropy of the dilute ⁴He-rich phase being larger than that of the pure phase. (A proper argument uses enthalpies – see Lounasmaa.) For a given ³He circulation rate \dot{n}_3 , the cooling power at T is approximately

$$\dot{Q} \sim 80 \dot{n}_3 (T^2 - T_{base}^2)$$

Circulation rate can be 1000 μ mol s⁻¹ with *big* pumps.

Problems and solutions

Use a log-book to keep a good record of all changes!

U Wiring:

- Use insulated superconducting wire with CuNi cladding, not copper cladding
- Thermally anchor at each intermediate stage
- Beware difficulty in cooling the core of coax cables
- Twisted pairs usually OK for low frequency
- Liquid fill lines anchor at all intermediate stages
- can you get the wiring or fill line out non-destructively?

Common problems:

 \Box Fridge initially gets cold then warms up 24h or so later to ~1K

• small leak – look for excess ⁴He or ³He in vacuum space

Pot empty

- blocked continuous fill
 - \blacktriangleright dirty ⁴He or air leak to ⁴He bath
- large heat load on pot
 - ➤ touch?
 - ➤ any new wiring?

Base T very high

- touch between shields
- large heat load
 - > diagnostic see if cools if increase circulation rate if so
 - o touch?
 - o any new wiring?

Condensers keep blocking

- air leak into system
- 'cold traps' not cold or contaminated
- poor procedures?
 - > pump carefully at start of run
 - > ensure equal pressure both sides of an impedance

Dilution fridge specific:

Fridge won't start to cool or cools badly

- Has something changed?
 - mixture loss
 - ➢ wiring changed
 - > new experimental cell

!! Do you really want to continue?? The following is for experts only - seek advice locally first before doing anything which might be irreversible!!!

Symptom:

no vapour pressure in still

no cooling of still

- still empty
 - \rightarrow too little mixture add ⁴He

Symptoms:

mixing chamber not very cold

mixing chamber not the coldest

- phase boundary in wrong place difficult to tell!
 - > remove ³He to storage containers and monitor temperature

C) Adiabatic Nuclear Refrigeration

□ Single shot process

□ *T* < 3 mK

Needs

- large magnetic field, B > 6 Tesla
- dilution fridge precool to < 10 mK through superconducting heat switch

see Pickett, Rep Prog Phys 51, 1295, 1988 for a recent review or Pobell's book

Cool nuclear paramagnet, usually copper, in high field, isolate and remove B.

Entropy S = f(B / T); adiabatic S = const $\therefore B \downarrow T \downarrow$

difficulty of thermal contact

Thermal Contact

□ The lowest sample temperature is often determined NOT by the refrigerator cooling power/base temperature but by the thermal link to the sample

heat flow \dot{Q} through finite thermal resistance *R* causes $\varDelta T$

$$\dot{Q} = \Delta T / R$$

Thermal time constant $\tau = RC$ where C is the sample heat capacity

Metallic contact:

Thermal conductivity is very difficult to measure. Fortunately, we can use the Weidemann-Franz law which relates the thermal and electrical conductivities. These quantities are related through the constant

$$L_0 = \frac{K}{\sigma T} = 2.45 \times 10^{-8} \,\mathrm{W}\Omega \,\mathrm{K}^{-2}$$

where *K* is the thermal conductivity at temperature *T*, and σ is the electrical conductivity at *T*. The room temperature electrical conductivity is usually well known and the low temperature conductivity can be found by a quick measurement of the ratio of the resistivity at room temperature to that at 4K– the Residual Resistance Ratio RRR = ρ_{293K} / ρ_{4K} (connect up a 4-probe resistance measurement and dip the sample into a ⁴He dewar. The ratio avoids needing to know the sample dimensions accurately.)

typically:

- 50 –100 for untreated copper wire
- 1 for alloys Stainless Steel, CuNi

if very pure (99.999%) starting material, heat treating can raise this to 1000 – 10000

Thermal resistance R = l / KA where

$$K = L_0 \frac{RRR}{\rho} T \text{ where } \sigma = \frac{RRR}{\rho}$$
$$\dot{Q} = \frac{KA}{l} \Delta T$$

SO

If the temperature difference ΔT across the conductor is large, you must integrate

$$\dot{Q} = \int_{T_{cold}}^{T_{hot}} \frac{KA}{l} dT$$
$$\dot{Q} = \frac{A}{l} L_0 \frac{RRR}{\rho} \frac{(T_{hot}^2 - T_{cold}^2)}{2}$$

As an example, lets consider a 1mm diameter untreated copper wire straight off a reel connecting your sample to the mixing chamber of a dilution fridge at 10mK. We'll assume $1\mu W$ power is dissipated in the sample, the typical cooling poower of a dilution efrigerator at 10mK.

Metallic sinters

Boundary resistance between fine metal particles (sinters) and the He liquids inversely proportional to the sinter area and depends on T as

³ He – ⁴ He		$R \propto 1/T^2$
³ He	<i>T</i> > 10 mK	$R \propto 1/T^3$
³ He	<i>T</i> < 10 mK	$R \propto 1/T$

Screw Joints

screw joints can have contact resistance < $0.1\mu\Omega$ with care. $R \sim 4 / T K^2 / W$

Thermal Isolation

Insulators:

Best material

- Uvespel SP22
 - strong, machinable
 - low thermal conductivity $K = 17 \times 10^{-4} T^2 W m^{-1} K^{-1}$ Locatelli, Cryogenics **16**, 374, 1976

Superconducting heat switches

	T _c (K)	H _c (mT)	contact method
Sn	3.7	30.4	solder [¶]
Zn	0.85	5.3	solder with Cd [†] or In
AI	1.16	10.3	gold plate & clamp or melt
¶ beware changing	g to grey tin powder	-	

+ highly toxic!

Vibrational Isolation

Let think about it especially if you have large magnetic fields

- use air springs to decouple from floor
- dump vibrations from pipework, etc in heavy masses

Thermometers

- thermal contact difficult.
- > want small *C* to get fast response

Resistance thermometry

(Speer) carbon resistor

- \Box usable to ~10 mK with care
- \Box power dissipation must be < T³ nW/K³ ~10⁻¹⁵ W at 10 mK
- **i** field dependent
- Cooled mainly through the leads
 - glue thin slice to copper plate improves thermal contact.

The examples below are of a 47Ω Speer resistor mounted directly in the liquid in the mixing chamber and a similar 47Ω Speer resistor ground to ~0.5mm thick, glued to a copper plate (insulated by stycast 1266 impregnated cigarette paper, attached by a silver wire to a sinter pad in the mixing chamber. Both resistors have simple low-pass LC filters on the electrical leads. The ground resistor tracks T to much lower temperatures.

Germanium resistor

• expensive & fragile

 \Box some OK down to ~ 20 mK

☐ field dependent

RuO₂ resistor

u not very field dependent

□ as Speer resistors otherwise

susceptibility thermometry

CMN

- **Curie-Weiss law** $\chi = C/(T-\Delta)$
- SQUID useful

two forms

- powder form for He liquids
- slurry with glycerol in fine wires for thermal contact to solid
- \Box usable down to ~3 mK with care
 - dilute with La to go lower
- field dependent
- **c**an order above 3 mk if dehydrated

PdFe (few % Fe) see Pobell's book

- \Box Curie law $\chi = C/T$
- □ ~50 mK to << 1mK
- SQUID necessary
- ☐ field dependent
- □ tunable range by Fe content

NMR Pt wire or powder

- **i** field independent
- \Box Curies law $\chi = C/T$
- D pulsed technique
 - τ_2 short τ_1 long (= 0.03/T s)
- Commercially available
- \square 20 mK to ~1 μ K with care

Capacitance thermometer – Frossatti LT18, p1723

- □ field independent
- □ 1 K to 1 mK
- ☐ fast response, low dissipation,
- \Box resolution 10µK at 1mK
- needs 'fancy' C bridge Andeen-Hagerling

³He melting curve

- **0.3K 2 mK**
- \Box difficult to calibrate needs T_A
- **i**field independent
- □ large heat capacity slow response

Nuclear Orientation

- \Box measure γ -ray decay anisotrophy
- □ constant heat leak which cannot be turned off!
 •650 pW per 1µC ⁶⁰Co
- slow
- □ needs expensive detectors

Vibrating wire resonators

- useful in ³He or ³He-⁴He mixtures
- **5**0 mK to < 100 μK
- measures liquid temperature directly
- requires magnetic field