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Initial statement of problem 
 

 You need to choose a refrigerator that can get colder than the temperature needed 
by your experiment TE 

 
 The refrigerator must have sufficient cooling power to absorb the power dissipated 
by the measurement Q& E and still maintain TE 

 
 You need to cool the sample through some thermal link: 
• sample must cool in a reasonable time 
• thermal contact must be good enough that Q& E doesn't warm the experiment 

above TE 
 

 You need to be able to measure temperature: 
• resolution, stability, transferability 
• thermal contact 
• power dissipation of the thermometer 
• response time of the thermometer 
• sensitivity to external parameters    e.g. magnetic field 

 
 

Books: 
 
O V Lounsamaa         Experimental Principles & Methods below 1K 

Academic Press 1974 
 
D S Betts      Refrigeration and Thermometry below 1K 

Sussex Univ Press 1976 
 

R C Richardson & E N Smith Experimental Techniques in Condensed Matter 
Physics at Low Temperatures, Addison Wesley 1988 
  

F Pobell     Matter & Method at Low Temperatures 
Springer Verlag 1996 
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Cooling Methods 
 
The main choices of refrigeration method: 
 

a) T > 0.25 K  3He evaporation cryostat 
   
b) 1.0 > T > 0.003 K 3He - 4He dilution refrigerator 
   
c) T < 0.003 K Adiabatic nuclear demagnetisation 
   
 Others: Not discussed further  

  Adiabatic electron demagnetisation† 
  PrNi5 demagnetisation 
  Pomeranchuk cooling 
   

† For example, the recently developed Cambridge Magnetic Research mFridge.  
Tmin < 40mK, 24 hours @ 100mK 
 
Cryogen-free systems now becoming available which can be combined with one of the 
above. 
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a) 3He evaporation cryostat 
 

 commercially available 
 reasonable cooling power 

 
Oxford Instruments:  

Tbase= 250mK,  
40μW for 6 hours with T < 300 mK 

 
Temperature dependence of 3He vapour pressure 
described by Clausius-Clapeyron equation   

V
S

dT
dP

Δ
Δ

=  

 
Ignoring negligible liquid molar volume, 
substituting for the (approx constant) latent heat 
L=TΔS, find 

P ∝ exp (-L / RT)  
 

Cooling power ∝ mass flow across phase 
boundary ∝ P. ∴ exponentially falling cooling 
power.   

L /R=2.5 K limits Tbase to 0.2 – 0.3 K 
 
Costs: 

 4He £3 per liquid litre, 3He £60,000 per liquid litre!  
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b)  3He-4He dilution refrigerator  
 

 commercially available 
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 not cheap to buy or run! 
 
Oxford Instruments:  

Tbase < 7mK,  
cooling power > 300μW at 100 mK 

 
Just a different form of evaporation cooling. 
 
Well described in literature: 

Frossatti, LT15, J de Physique C6,  
sup 8, 1578, 1975 
 

How does it work? 3He-4He mixture phase 
separates as it cools into a 3He-rich phase floating 
on top of a 4He-rich phase. At T~0 K, the 3He-rich 
phase is 100% 3He whilst the 4He-rich phase is 
~6.6% 3He. If 3He can be made to ‘evaporate’ 
across the phase boundary from the 3He-rich 
phase to the 4He-rich phase, then cooling can 
occur. The entropy of each phase is proportional 
to T (Fermi statistics) with the entropy of the dilute 4He-rich phase being larger than that 
of the pure phase. (A proper argument uses enthalpies – see Lounasmaa.) For a given 
3He circulation rate , the cooling power at T  is approximately 3n&

3He

3He -4He ~ 6%

100%

Forbidden Region

0.8K

Superfluid
4He

4He

3He fraction

Normal

6% 100%

free surface

tricritical point

)(80~ 22
3 baseTTnQ −&&  

Circulation rate can be 1000 μmol s-1 with big pumps. 



Problems and solutions  
 
Use a log-book to keep a good record of all changes! 
 

 Wiring:  
• Use insulated superconducting wire with CuNi cladding, not copper cladding 
• Thermally anchor at each intermediate stage 
• Beware difficulty in cooling the core of coax cables  
• Twisted pairs usually OK for low frequency 
• Liquid fill lines anchor at all intermediate stages 
• can you get the wiring or fill line out non-destructively? 
 

Common problems: 
 

 Fridge initially gets cold then warms up 24h or so later to ~1K  
• small leak – look for excess 4He or 3He in  vacuum space 

 
 Pot empty 

• blocked continuous fill  
 dirty 4He or air leak to 4He bath 

• large heat load on pot 
 touch?  
 any new wiring? 

 Base T very high  
• touch between shields 
• large heat load  

 diagnostic see if cools if increase circulation rate – if so 
o touch?  
o any new wiring? 

 
 Condensers keep blocking 

• air leak into system  
• ‘cold traps’ not cold or contaminated 
• poor procedures? 

 pump carefully at start of run  
 ensure equal pressure both sides of an impedance 

 
Dilution fridge specific: 
 

 Fridge won’t start to cool or cools badly 
• Has something changed? 

 mixture loss 
 wiring changed 
 new experimental cell 
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!!  Do you really want to continue?? The following is for experts only - seek advice 
locally first before doing anything which might be irreversible!!! 
 
Symptom:  

 no vapour pressure in still  
 no cooling of still  

• still empty 
 too little mixture – add 4He 

 
Symptoms:  

 mixing chamber not very cold  
 mixing chamber not the coldest  

• phase boundary in wrong place – difficult to tell! 
 remove 3He to storage containers and monitor temperature 

 
c) Adiabatic Nuclear Refrigeration 
 

 Single shot process 
 T < 3 mK 

 
Needs  

• large magnetic field, B > 6 Tesla 
• dilution fridge precool to < 10 mK through superconducting heat switch  

 
see Pickett, Rep Prog Phys 51, 1295, 1988 for a recent review or Pobell’s book 
 
Cool nuclear paramagnet, usually copper, in high field, isolate and remove B. 
 
Entropy  S = f(B / T); adiabatic S = const   ∴ B ↓    T↓ 
 

difficulty of thermal contact 
 

nuclei electrons phonons sample

Korringa link
τ1T=Κ

electron-phonon
interaction Kaptiza link

Tn Te Tp Ts

small heat capacity

 
 
 
 
 
 
 
 
 
Limits:  

nuclear spins Tnuc ~ 100 pK 
electrons Telectron ~ 1 μK 
3He T3 ~ 80 μK 
3He –4He mixtures T3 ~ 100 μK ?? 
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Thermal Contact 
 

 The lowest sample temperature is often determined NOT by the refrigerator 
cooling power/base temperature but by the thermal link to the sample 

 
heat flow Q  through finite thermal resistance R causes ΔT  &

RTQ /Δ=&  
Thermal time constant  τ=RC where C is the sample heat capacity 
 
Metallic contact: 
 
Thermal conductivity is very difficult to measure. Fortunately, we can use the   
Weidemann-Franz law which relates the thermal and electrical conductivities. These 
quantities are related through the constant  

28
0 KWΩ1045.2 −−×==

T
ΚL

σ  

where K is the thermal conductivity at temperature T , and σ is the electrical 
conductivity at T . The room temperature electrical conductivity is usually well known 
and the low temperature conductivity can be found by a quick measurement of the 
ratio of the resistivity at room temperature to that at 4K– the Residual Resistance 
Ratio RRR = ρ293K / ρ4K ( connect up a 4-probe resistance measurement and dip the 
sample into a 4He dewar. The ratio avoids needing to know the sample dimensions 
accurately.) 
 
typically: 

• 50 –100 for untreated copper wire 
• 1 for alloys - Stainless Steel, CuNi 

 
if very pure (99.999%) starting material, heat treating can raise this to 1000 – 10000  
 
Thermal resistance R = l / KA where 

 TRRRLK
ρ0=  ρ

σ RRR
=      where  
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If the temperature difference ΔT across the conductor is large, you must integrate 
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As an example, lets consider a 1mm diameter untreated copper wire straight off a 
reel connecting your sample to the mixing chamber of a dilution fridge at 10mK. We’ll 
assume 1μW  power  is dissipated in the sample, the typical cooling poower of a 
dilution efrigerator at 10mK.. 
 
 
 

 
 
Metallic sinters 
Boundary resistance between fine metal particles (sinters) and the He liquids 
inversely proportional to the sinter area and depends on T as 
 

3He – 4He  R ∝ 1 / T2 
3He T > 10 mK R ∝ 1 / T3 
3He T < 10 mK R ∝ 1 / T 

 
Screw Joints 
screw joints can have contact resistance < 0.1μΩ with care.  R ~ 4 / T K2/W 
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Thermal Isolation 
 
Insulators: 
Best material  

 Vespel SP22 
• strong, machinable 
• low thermal conductivity   K  = 17 x 10-4 T2 W m-1 K-1Locatelli, 

Cryogenics 16, 374, 1976 
 
 
Superconducting heat switches 
 

 TC(K) HC(mT) contact method 
Sn    3.7 30.4 solder¶ 
Zn    0.85 5.3 solder with Cd† or In 
Al     1.16 10.3 gold plate & clamp or melt 

¶ beware changing to grey tin powder  
† highly toxic! 
 
 
 

Vibrational Isolation 
 think about it especially if you have large magnetic fields 
• use air springs to decouple from floor 
• dump vibrations from pipework, etc in heavy masses 

 
 
 

Thermometers 
 

 thermal contact difficult.  
 want small C to get fast response 
 

Resistance thermometry 
 
(Speer) carbon resistor 

 usable to ~10 mK with care 
 power dissipation must be < T3 nW/K3 ~10-15 W at 10 mK 
 field dependent 
 cooled mainly through the leads 

• glue thin slice to copper plate improves thermal contact.  
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The examples below are of a 47Ω Speer resistor mounted directly in the 
liquid in the mixing chamber and a similar 47Ω Speer resistor ground to 
~0.5mm thick, glued to a copper plate (insulated by stycast 1266 
impregnated cigarette paper, attached by a silver wire to a sinter pad in 
the mixing chamber. Both resistors have simple low-pass LC filters on the 
electrical leads. The ground resistor tracks T to much lower temperatures. 
 

Temperature (mK)

47 Ω Speer

47 Ω ground Speer

 
 

Germanium resistor 
 expensive & fragile  
 some OK down to ~ 20 mK 
 field dependent 

 
RuO2 resistor 

 not very field dependent 
 as Speer resistors otherwise 

 

susceptibility thermometry 
 

CMN 
 Curie-Weiss law  χ = C/(T-Δ) 
 SQUID useful  
 two forms 

• powder form for He liquids 
• slurry with glycerol in fine wires for thermal contact to solid 

 usable down to ~3 mK with care 
• dilute with La to go lower 

 field dependent 
 can order above 3 mk if dehydrated 
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PdFe (few % Fe) see Pobell’s book 
 Curie law    χ  = C/T 
 ~50 mK to << 1mK 
 SQUID necessary 
 field dependent 
 tunable range by Fe content 

 
NMR Pt wire or powder 

 field independent 
 Curies law    χ  = C/T 
 pulsed technique 

•  τ2 short    τ1 long (= 0.03/T s) 
 commercially available 
 20 mK to ~1 μK with care 

 

Capacitance thermometer – Frossatti LT18, p1723 
 field independent 
 1 K to 1 mK 
 fast response, low dissipation,  
 resolution 10μK at 1mK 
 needs ‘fancy’ C bridge Andeen-Hagerling 

 

3He melting curve 
 0.3K – 2 mK 
 difficult to calibrate - needs TA 
 field independent 
 large heat capacity – slow response 

 

Nuclear Orientation 
 measure γ-ray decay anisotrophy  
 constant heat leak which cannot be turned off! 

• 650 pW per 1μC 60Co 
 slow 
 needs expensive detectors 

 

Vibrating wire resonators 
 useful in 3He or 3He-4He mixtures 
 50 mK to < 100 μK 
 measures liquid temperature directly 
 requires magnetic field 
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